Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering.

نویسندگان

  • Lauren Shor
  • Selçuk Güçeri
  • Robert Chang
  • Jennifer Gordon
  • Qian Kang
  • Langdon Hartsock
  • Yuehuei An
  • Wei Sun
چکیده

Bone tissue engineering is an emerging field providing viable substitutes for bone regeneration. Recent advances have allowed scientists and engineers to develop scaffolds for guided bone growth. However, success requires scaffolds to have specific macroscopic geometries and internal architectures conducive to biological and biophysical functions. Freeform fabrication provides an effective process tool to manufacture three-dimensional porous scaffolds with complex shapes and designed properties. A novel precision extruding deposition (PED) technique was developed to fabricate polycaprolactone (PCL) scaffolds. It was possible to manufacture scaffolds with a controlled pore size of 350 microm with designed structural orientations using this method. The scaffold morphology, internal micro-architecture and mechanical properties were evaluated using scanning electron microscopy (SEM), micro-computed tomography (micro-CT) and mechanical testing, respectively. An in vitro cell-scaffold interaction study was carried out using primary fetal bovine osteoblasts. Specifically, the cell proliferation and differentiation was evaluated by Alamar Blue assay for cell metabolic activity, alkaline phosphatase activity and osteoblast production of calcium. An in vivo study was performed on nude mice to determine the capability of osteoblast-seeded PCL to induce osteogenesis. Each scaffold was implanted subcutaneously in nude mice and, following sacrifice, was explanted at one of a series of time intervals. The explants were then evaluated histologically for possible areas of osseointegration. Microscopy and radiological examination showed multiple areas of osseous ingrowth suggesting that the osteoblast-seeded PCL scaffolds evoke osteogenesis in vivo. These studies demonstrated the viability of the PED process to fabricate PCL scaffolds having the necessary mechanical properties, structural integrity, and controlled pore size and interconnectivity desired for bone tissue engineering.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Precision extruding deposition and characterization of cellular poly-epsiloncaprolactone tissue scaffolds

Successes in scaffold guided tissue engineering require scaffolds to have speciŽc macroscopic geometries and internal architectures to provide the needed biological and biophysical functions. Freeform fabrication provides an effective process tool to manufacture many advanced scaffolds with designed properties. This paper reports our recent study on using a novel precision extruding deposition ...

متن کامل

Precision Extrusion Deposition of Polycaprolactone/ Hydroxyapatite Tissue Scaffolds

Freeform fabrication provides an effective process tool to manufacture advanced tissue scaffolds with specific designed properties. Our research focuses on using a novel Precision Extrusion Deposition (PED) process technique to directly fabricate Polycaprolactone (PCL) and composite PCL/ Hydroxyapatite (HA) tissue scaffolds. The scaffold morphology and the mechanical properties were evaluated u...

متن کامل

Fabrication and Characterization of Polycaprolactone – Zeolite Y Nanocomposite for Bone Tissue Engineering

In recent years, nanoceramics have been used in scaffolds to emulate the nanocomposite with a three-dimensional structure of natural bone tissue. In this regard, polycaprolactone biopolymer is widely used as a scaffold in bone tissue engineering. The goal of this research is to produce porous scaffolds of polycaprolactone - zeolite biocomposite with suitable mechanical, bioactive and biological...

متن کامل

Fabrication of Gelatin/PCL Electrospun Fiber Mat with Bone Powder and the Study of Its Biocompatibility

Fabricating ideal scaffolds for bone tissue engineering is a great challenge to researchers. To better mimic the mineral component and the microstructure of natural bone, several kinds of materials were adopted in our study, namely gelatin, polycaprolactone (PCL), nanohydroxyapatite (nHA), and bone powder. Three types of scaffolds were fabricated using electrospinning; gelatin/PCL, gelatin/PCL/...

متن کامل

Fabrication, mechanical and in vivo performance of polycaprolactone/tricalcium phosphate composite scaffolds.

This paper explores the use of selective laser sintering (SLS) for the generation of bone tissue engineering scaffolds from polycaprolactone (PCL) and PCL/tricalcium phosphate (TCP). Different scaffold designs are generated, and assessed from the point of view of manufacturability, porosity and mechanical performance. Large scaffold specimens are produced, with a preferred design, and are asses...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biofabrication

دوره 1 1  شماره 

صفحات  -

تاریخ انتشار 2009